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ABSTRACT

Thermoacoustic engines are designed to perform optimally at one

frequency. However, the thermoacoustic prime movers have been shown to

generate highly nonlinear waveforms, in which a significant amount of the

acoustic energy appears in higher harmonics. This condition reduces the

overall efficiency of the engine. The harmonics can be suppressed. But does

the suppression mean that more energy remains in the fundamental

frequency? This question is the topic of this thesis. Finite-amplitude

standing waves were generated in a standing wave tube. The steady state

input acoustic power was compared to the steady state dissipated acoustic

power for two configurations - an empty tube and an obstructed tube - over a

wide range of input powers. The waveforms in the empty tube were rich in

harmonics, whereas the obstruction suppressed the harmonics significantly.

The results of the measurements indicate that suppression of the harmonics

also suppresses the transfer of energy from the fundamental.
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I. INTRODUCTION

Thermoacoustic engines, or acousti' heat engines, have been the subject

of a number of scientific investigations over the past decade or so. One main

reason for interest in thermoacoustic engines is the fact that thermoacoustic

engines are energy-conversion devices that achieve simplicity by use of

acoustic technology. One class of thermoacoustic engines consists of standing

wave thermoacoustic engines, which are designed around an acoustic

resonator. In these engines, the acoutic energy or power is generated by or

supplied to the engine at t*he fundamental resonance frequency of the

resonator. Standing wave thermoacoustic engines are designed to perform

optimally at this frequency. Therefore, it is desirable that the acoustic energy

remain in that fundamental mode. However, the acoustic pressure

amplitudes involved are large enough for nonlinear effects to be important.

Nonlinear effects will be manifested in the generation of harmonics of the

fundamental frequency, thus taking energy out of the fundamental mode.

Should nonlinear effects be important, a number of questions arise. How

much of the input energy stays in the fundamental mode? How much

energy is transferred to the harmonics? Is there a way to prevent this

transfer?

Lin [Ref. 11 and Atchley, et. al. [Ref. 21 showed that the acoustic

waveforms generated within a thermoacoustic prime mover can be highly

nonlinear. In fact, the waveforms that they observed very closely resemble

those generated by Coppens and Sanders [Ref. 31 in a geometrically simpler

system ---- a rigid-walled standing wave tube. Coppens and Sanders studied



the problem of finite-amplitude standing waves and analyzed their results

using a perturbation expansion solution of the nonlinear acoustic wave

equation and taking intc account viscous and thermal losses at the tube walls.

The overall good agreement between their measurements and predictions

showed that the standing wave tube is a good experimental apparatus for

understanding finite-amplitude standing waves. Therefore, it was decided to

try to find experimental answers to some of the questions raised above for

the simple standing wave tube first, before using the more complex geometry

of a thermoacoustic engine. These experimental investigations are the topic

of this thesis.

The research was conducted in two phases ---- the empty tube phase and

the obstructed tube phase. The empty tube phase served as a baseline, as a

check of procedures and analysis techniques. The simplicity of the empty tube

geometry makes analysis relatively straightforward. In this phase, the

standing wave tube was driven at one end with a piston source, over a range

of amplitudes from low up to those necessary for shock formation, at the

fundamental frequency. Measurement of the steady state input acoustic

power and the steady state acoustic power dissipated in each harmonic

allowed determination of how much of the input energy stays in the

fundamental mode and how much is transferred to the harmonics. These

same measurements were repeated in the obstructed tube phase, which

allowed the determination of whether or not there is a way to prevent the

energy transfer.

The outline of this paper is as follows. In Section II, we describe the

theory necessary to understand the concepts. The experimental setup and

2



procedures are described in Section Ill. Section IV is devoted to the discussion

of the results. Finally, the conclusions are given in Section V.
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II. THEORY

The goal of this thesis is to investigate experimentally the steady-state

distribution of energy in finite-amplitude standing waves. In particular, it is

desired to determine how the energy is transferred to harmonics due to

nonlinear effects in the preshock regime. We shall begin this section, which

is devoted to the basic energy considerations, by examining the total input

power and the total dissipated power for the case of an empty tube. Next, we

will consider the small-but-finite perturbation approach given by Coppens

and Sanders. Finally, we will treat the more complicated situation, i.e., the

obstructed tube.

A. ENERGY CONSIDERATIONS

1. Derivation of input power E input

Let us consider a closed, rigid, cylindrical tube of cross sectional area

S (radius a), as shown in Fig. 1, with a length (along x) of L, and filled with air

of density p0 and sound speed c. The tube is rigidly terminated at x = L and is

driven by a piston at x = 0, not shown in the figure. The piston vibrates

harmonically at the lowest resonance angular frequency co of the resonator, so

that L=./2. The air inside the tube oscillates longitudinally at angular

frequency co. If we take x = 0 at the left end of the tube, then the dependence of

the acoustic pressure and velocity with distance for a plane wave in the tube

is given by

p(x,t) = PA cosk(L-x) sinot, (1)

4



u(x,t) = PA sink(L-x)coscot.
poC (2)

where PAiS the pressure amplitude at the pressure antinodes of the standing

wave, t is time and k is the wave number. Notice that under conditions of

mechanical resonance for a rigid tube (at x=O or x= L), sink(L-x) = 0, hence we

have kL = n x.

°I
x=O x=L

-p-

Poa

U _____0________>______

Fig. 1. A plane-wave resonator of length L = X / 2 and maximum values
for p(x), u(x). The piston of driving the acoustic oscillation is not

shown.

The average rate of energy flow per unit area at a given location is

equal to the mean value of the product of pressure and particle speed, thus

5



acoustic intensity acoustic power =(Pu),unit area (3)

where (.) denotes a time average. We can represent the input power

delivered by the piston as

Plinput= (u(0,t) p(O,t)) S . (4)

In Eq. (4), we have already explicitly used both pressure and velocity at the

piston end. It can be shown [Ref 6: p206] that at resonance the pressure at x=0

and the velocity of the piston are in phase. The velocity of the piston can be

represented in terms of the piston acceleration as

u(O,t) = Ao sin(ot ).co (5)

where Ao is the peak acceleration amplitude of piston. Also, at resonance, the

acoustic pressure at the piston can be written as

p(O,t)= PA sin ct. (6)

Eq. (4) can then be rewritten as

P-input= sin (o). PAsin (ox))S, (7)

or carrying out the time average, Eq. (7) becomes

6



tin.u_ PAAo
in -.(8)

Eq. (8) can be used to obtain the input power at resonance, if the pressure

amplitude at the piston and the piston acceleration amplitude are known.

2. Dissipated power I for the empty tube

Swift [Ref. 4] gives an elaborate discussion of the total dissipated

power t and the stored energy Est for a plane-wave resonator. According to

Swift the total dissipated power E in a cylindrical tube of length L and radius

R is

p2

4 poc 2  -L- R I+ s ( Li j (9)

Here, e . is the ratio of the heat capacity of the gas to that of the tube wall,

8, = f2V-77 is the viscous penetration depth, with v = g / Po the kinematic

viscosity and 19 the dynamic viscosity. Also, B. = fTK-Tw- is the thermal

penetration depth, where iC = k / poc is the thermal diffusivity and k is the

thermal conductivity. The reader is referred to Ref. 4 for a more complete

discussion.

We will find it useful to express Eq. (9) in terms of the attenuation

coefficient a. It is to be noted that, for steady state, the power delivered by the

piston equals the power dissipated by the tube. Further, essentially all of the

dissipated power t arises from viscous and thermal effects at the tube walls.

7



In general, by using a microphone, we could determine the attenuation

constant from

P2 = pleO(xx1), (10)

where P, is the pressure amplitude at x, and p2 that at x2 (see Ref. 6: p208).

This equation is applicable for traveling waves. We use standing waves.

Hence, instead of determining a through Eq. (10), we determine it through

the quality factor Q. The attenuation constant a can be determined by the

quality factor Qn of the nth mode of the tube by a = wn/ 2QP. [Ref. 6: Eq. (30)]

The quality factor Q, a measure of the sharpness of the frequency response of a

driven resonator, may be measured or computed in several ways. One

definition of Q is

Q= Est,
E (11)

where Est is the energy stored in the resonator and E is the power dissipated

per cycle. To compute the Q from Eq. (11), we will need expressions for Est

and E. We know that the energy transported by acoustic waves through a

fluid medium is of two forms; the kinetic energy of the moving particles and

the potential energy of the compressed fluid. The instantaneous energy

density may be written as

E=IpoU22+1 p2

2 2 poC2 (12)

8



The first term in Eq. (12) is the kinetic energy per unit volume; the second

term is the compressive energy stored per unit volume. The time average of

ei gives the time-averaged acoustic energy density e at any point in the fluid,

that is

__ 'L' ' p2 t
( T po (u2 + 2) dt.T 2

T) 0 2 P C2  (13)

Substituting Eqs. (1) and (2) into Eq. (13), we obtain simply

CI -A-[sin2k(L-x) + cos2k(L-x)]

4 poC2

4 poC2  (14)

The total stored energy Est is easily obtained by integrating the time-

averaged acoustic energy density , over the volume of the tube. This yields

2

Est=f E dV PA SL.
PoC (15)

Once again, in steady state, the power dissipated by the tube is that

delivered by the piston. Hence, the substitution of Eqs. (8) and (14) into Eq.

(11) yields

9



I 2A SL
Q POC IOPAL

PAAo S 2 poc2Ao
2o (16)

It is convenient to express the results of the preceding developments in terms

of the rms (root-mean-square) amplitudes,

Q CO P msL
2poc2Amns  

(17)

where Prms and Arms are the rms pressure and acceleration amplitudes,

respectively.

Equation (16) is valid for an unobstructed tube with constant cross

section. For the obstructed tube, we obtain the value of Q a different way, by

measuring the frequency response. The Q value of the tube can then be

determined by fitting the steady state frequency response to a standard

resonance equation[Ref. 3: Eq. (1)]

V(WO) = Vmax

1 02 (18)

where ao is the angular frequency of the drive and oo is the resonance angular

frequency.

10



Returning to Swift's expression for t, Eq. (9), substitution of Eqs. (9)

and (15) into Eq. (11) gives

8V=__+ aey -1) i 28(y - 1)

Q R R(1+e ) L(I+F- (19)

Using Eq. (19), Eq. (9) can be expressed as

4 poc 2 Q
I -_Pk2 xR2La

2 poc (20)

Eq. (20) expresses t in terms of a.

B. SMALL-BUT-FINITE PERTURBATION THEORY CONSIDERATION

At steady state, the power input from the piston is equal to the total

power dissipated by the tube, i.e.,

Einput = Etotal (21)

where

totl= ti + t2 + t3 +..(22)

The subscript "input" represents the energy input by the piston, while E1 , i 2 ,

... represent the power dissipated by the fundamental and higher harmonics,

respectively. The question, "How is the input energy transferred to the

harmonics?" now arises. That is, we want to know how much of the input

11



energy can be held in the fundamental and the overtones owing to the

nonlinear mechanism.

To find the answer, we use the small-but-finite amplitude theory

presented by Coppens and Sanders [Ref. 3]. Coppens et. al. give a detailed

discussion of the subject. They use a perturbation technique to express a

finite-amplitude standing wave as Fourier series in its harmonics. Also, they

make several assumptions. They assume that the attenuation is small and

the frequency is close to that of resonance.

From Coppens et. al., when the amplitude of the piston is such that finite-

amplitude effects are negligible, at the frequency of infinitesimal-amplitude

resonance, the pressure at the rigid end of the tube can be approximated as

P.=(POcAo) [(ccL)2 + sinik L)]
w 'C (23)

where P11 is the first-order pressure amplitude.

When finite amplitude effects are taken into consideration, the pressure

is modified by the presence of higher harmonics. That is

p(L,t) = P1 lsin(ox) + P2 sin(2wt +02) + P3 sin(3ot +02+0 3) +.... (24)

Again from Coppens et. al., the approximations of pressure amplitudes of the

first two harmonics are given by

12



and

P33 =2 Pc2 Q(25)

where Q are function of the parameter B.. The parameter 6 can be expressed

as a function of attenuation constant a. Recall that Coppens et. al. have

already assumed that the attenuation is small and the driving frequency is

close to that of resonance, so Eq. (23) - (25) are restricted to the experimental

conditions that we have.

To evaluate Eq. (23) - (25) more accurately, we will, however, include

more terms [Ref. 3 Eq. (34)]. Although they give more precise results, they are

too awkward to be listed here.

Finally, we can use the full expressions for Eq. (23) - (25) to calculate E and

E input- Coppens et. al. have shown this approach to be reasonably accurate.

Thus, we use it as a check of our procedures.

C OBSTRUCTED TUBE

So far we have focused attention on the empty standing wave tube, in

which the overtones are very nearly harmonic. We wish to investigate a

standing wave tube for which this is not the case. The mode structure of a

tube can be altered by inserting sections of pipe of smaller radius. The point

of all of this is to see if the energy transfer from fundamental to higher

harmonics can be altered or prevented by changing the mode structure of the

tube. This section begins with discussion of the resonance frequency of an

obstructed tube. Then, we discuss t for the obstructed case.

13



1. Resonance frequency of the obstructed tube

Rayleigh [Ref. 5] gives a detailed discussion of the variable cross

section tube. Basically, the idea is that the kinetic energy of the motion inside

the tube must be equal to the potential energy. To make rapid progress, we

summarize directly the result [Ref. 5: Eq. (7), p67]

w2~3{1 2f cos(ZK&)&}LL L ) S L"(26)

where wi is the resonance frequency and AS is the change of cross sectional

area. We may apply Eq. (26) to the mth harmonic, if we modify it by the

substitution of cos (2mnx/L) for cos (2nx/L).

We can also use the concept of boundary conditions to evaluate the

resonance frequency of an obstructed tube. In Fig. 2, we show the acoustic

pressure inside the obstructed tube schematically. The waves propagating to

the right can be expressed as follows:

PA = AeJ( (ot - kx), (27)
pC = Cej (a t" -ix), (28)

PE = Fei ((Ot -kx), (29)

where A,C, and E are the complex pressure amplitudes for regions 1, II and HI,

respectively. Also, we can write down equations for the waves propagating to

the left as

pB = Bi( Gt + kx), (30)

PD = De (ot + kx), (31)

14



T ,Ai(€tAkB/ ) -p = Ee/(Ot-kn)

aos j~Ce/ (t-ku) b-,*
secib -Il coss

Is.ectio S'

= De/ (Ot . kz)I] 9-Be/(Ot +kz) F ei ( t + kz)

0 L L L

Fig. 2. Transmission and reflection of a plane wave inside an obstructed
tube.

PF = Fe (Wt + kx), (32)

where B, D and F are the complex pressure amplitudes for regions I, II and III.

As usual, the boundary conditions are continuity of pressure and volume

velocity at each point along the tube. Thus, we have six unknowns and six

boundary conditions. The volume velocity U is the product of particle

velocity u and cross sectional area S. It is to be noted that u can be expressed

in terms of P as

U =-L--ej (ct
PoC (33)

We begin at x = L, using Eqs. (29), (32) and Eq. (33), we obtain

15



U(L,t) = UE(L,t) + UgL,t)

=_.S__E e j (x- KL)- .S_ F e (Ox- KL)
poC poc (34)

=0.

UE represents the volume velocity due to p and UF due to PF. The pressure

at x = L can be written as

P (L,t) = Eei (ot- kL) + Fej (wt + kL) =pLetiwt. (35)

From Eqs. (34) and (35), we find

E= PLe U-
2 (36)

and

F = 2PLe'id U.
2 (37)

Using similar procedure, we apply the boundary conditions at x = L2, x = L1

and x = 0 sequentially. We obtain expressions for A, B, C and D. After a long

calculation and manipulation, we finally have the condition for resonance,

sin (I) - -S/S'i 1L - 2W.J - I +/S sin (L - 2LI)
k + SS' i n  1 + (38)

+ (' -s/s'l S)1 s'sIin [L -AL2 -L I = 0.
1 + S/S' I + I'/S

16



This transcendental equation can be solved for the resonance frequency. The

experimental results are compared with theoretical calculations for both

Rayleigh's theory and boundary condition and shown in Section IV.

2. E of the obstructed tube

Recall that for the case of the constant cross section tube, the total

dissipated power E is given by Eq. (9). Since the inner surface area of the tube

changes after inserting the obstruction, we must perform the integration of

the dissipation per unit area, 6 [Ref. 4: Eq. (89)], over the different regions

separately. The total dissipated power for the obstructed tube is, after a

lengthy calculation and collecting the like terms,

Eobstructed 1 po2r
4 pOC2

[a _s1 + R)+ Xsin k(1-X))] I P2c x r RL (+r2kLL kL 11 + 6 poc 2

x[(l + b2 + 2b cos 0)(D + D)] (39)

where
r = obstructed tube inner radius

empty tube inner radius

X length of obstruction
X length of empty tube'

b r

17



01= kL(I -X),

0 =tan- b sin 01
l+b cos o1

D-= {y-1)(X . sin (l I +X) - 8) sin (1-4-),2kL 2kL

{ sin (kL1+X) - e) + sin (II-X) -e)}
2kL 2kL

Once r, X,8v, 8v have been determined, the tinput is readily obtained from Eq.

(39). To obtain the input power for the obstructed tube, we use the same

equation as before, i.e., Eq. (8).

18



III. APPARATUS AND MEASUREMENTS

The first step toward accomplishing the goal of this thesis is to set up an

apparatus which generates intense longitudinal standing waves within a

rigid-walled tube. The set-up and use of the device is described in this section.

A. EXPERIMENTAL SET-UP

1. Resonant Tube

Figure 3 shows a diagram of the apparatus and instrumentation.

The steel tube is 72.4 cm long, with a 5.72 cm inner diameter, and a wall

thickness of 2.86 cm. One end of the tube is rigidly capped by a 2.48 cm thick

aluminum cap and the other fitted with a piston. The tube contains air at

ambient pressure and temperature. A microphone at the rigid end of the tube

is used to measure the acoustic pressure as a function of time. An

accelerometer is mounted on the piston to sense the piston's motion. The

necessity of using a tube with very thick walls was indicated by previous

research carried out by Coppens and Sanders [Ref. 3]. Coppens et. al. pointed

out that an accelerometer mounted on the end of an aluminum tube with

0.32 cm wall thickness showed that the so-called "rigid" end cap actually

vibrating with a significant amplitude. Because of this, we used the thick-

walled tube which reduced the vibration of the tube. It is seen from Fig. 1 that

the wavelength of the lowest mode of the standing wave is X = 2L. Thus, the

calculated resonance frequency of the lowest mode is about 236 Hz-238 Hz.
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Fig. 3. Schematic diagram of the experimental setup for
generating finite-amplitude standing waves.
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2. Driver

The driver consists of a piston mounted on an MB Model EA 1500

PM shaker table. In operation, the piston surface contacts a thin diaphragm

which seals the open end of the tube. The motion of the piston is monitored

with an accelerometer. The arrangement is sketched in Fig. 4. The face of the

piston was made with a very slight curvature so that there are no air pockets

in between the piston face and the diaphragm, when the piston was aligned

with the tube. We found that the diaphragm provided a better seal and less

distortion of the piston motion than an 0-ring seal. It is important that the

motion of the piston be as free of harmonic distortion as possible.

PISTON

-S---AKER A

A: accelermelar

Fig. 4. The arrangement of the piston and the diaphragm. The curvature
of the piston face is highly exaggerated.

The piston is very carefully aligned before measurements, so that the

second- and third-harmonic distortions of the acceleration waveform were at
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least 50 dB below the fundamental, i.e., 0.5% of the fundamental. Fig. 5

portrays the relative amplitude level for the fundamental and overtones of

the acceleration.

0 dB

-4

-so dB

Frequeacy (Hz)
Driving. frequency

Fig. 5. Relative amplitude level of acceleration for fundamental and two
overtones.

3. Accelerometer, microphone and calibration

As described above, an accelerometer is used to monitor the motion

of the piston. We mounted an ENDEVCO accelerometer (serial number SN

AJ31 type 2215) within the piston. The accelerometer output signal is

amplified by TEKTRONIX AM Differential Amplifier with a gain of 100. A
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tiny, 0.594 cm diameter, ENDEVCO Model 8510B-5 (serial number G63T)

piezoresistive pressure transducer was mounted on the rigid end of the tube

so that its diaphragm was flush with the end of the tube. The small diameter

was chosen to minimize the disturbance of the rigid boundary condition. In

general, the frequency response of the microphone was flat for the frequency

range we were interested in. Its resonance frequency was greater than 50 kHz.

Since the fundamental of the tube is around 238 Hz, this microphone was

capable of faithfully reproducing the pressure waveform.

The experimental determination of the absorption coefficient a and

the infinitesimal amplitude P11 requires absolute calibrations of both

accelerometer and the microphone. We calibrated the accelerometer with a

Briel & Kjmr calibration exciter (serial number 1343643). At frequency 159 Hz,

ten determinations of the accelerometer sensitivity resulted in SA = 66.3 ± 0.6

mV/(m/s 2). The sensitivity of the microphone was SM = 53.85 mV/psi,

according to manufacturer's specifications.

B. DATA ACQUISITION

The research was conducted in two phases: the empty tube phase and the

obstructed tube phase. The same measurement sequences were performed in

each phase. First, the Q was determined from Eq. (17) with the measured rms

pressure and acceleration amplitudes at the resonance frequency. Next, the Q

was determined by measuring the steady state frequency response and fitting

the data to Eq. (18). Finally, the acceleration spectrum and the pressure

spectrum and waveform were measured. These three sequences were

repeated for various drive levels. Some specific details are given in this

section.
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As discussed in the previous section, to obtain the quality factor Q for the

empty tube, we mainly used the energy method [Eq. (17)], but we still used the

frequency response as a double check of procedures and analysis techniques

during each data run.

In general, the measurement procedure was as follows:

First, we used the energy method to obtain the Q and the resonance

frequency. The driving frequency was varied from below resonance (most of

the time, the frequency resolution was set to 0.1 Hz), until the maximum

microphone output was obtained. At this point, we recorded the values of

Prms and Arms from the HP 3457 Multimeter, and then used Eq. (17) to obtain

Q. To check for internal consistency, the run was immediately repeated by

starting above the resonance and working down. It should be pointed out

that we actually measured p(L,t) rather than p(0,t). However it can be shown

that at resonance p(L,t) = p(Ot).

Second, the measurement of Q using the frequency response method was

accomplished by driving the resonator at frequencies near resonance of the

lowest mode and measuring the steady state amplitude of the microphone

output signal with the lock-in amplifier. Data acquisition was performed by a

Standard 286 computer. Referring to Fig. 3, the computer communicates with

the lock-in amplifier, the digital multimeter and the function generator

through a GPIB interface. Through the execution of the controlling program,

a source signal is supplied by the function generator to the piston. The

accelerometer waveform was monitored by feeding the accelerometer output

signal to differential amplifier (the gain is 100), the oscilloscope, and the HP

3585A spectrum analyzer. The output voltage from the microphone was
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amplified by the second differential amplifier with a gain of 100 and sent to

the lock-in. The ouput of the lock-in, as well as all other data signals of

interest, were fed to the multimeter. The ouput of the multimeter is recorded

by the computer. Also, the oscilloscope was used to monitor the output

signal from the microphone. When data acquisition began, the approximate

resonance frequency and the half-power bandwidth are entered into the

computer, which then determines the start, stop frequencies and increment

frequency. The program set the driving frequency and measured the output

of the lock-in, then increased the frequency and repeated the process. After

finishing the data acquisition, a least square fit is performed to obtain the

resonance frequency and Q by using Eq. (18).

Third, once we determined the resonance frequency, we plotted the

acceleration spectrum, microphone output spectrum and waveforms from

the HP 3651A spectrum analyzer.

The procedures mentioned above were adopted for both empty tube

phase and obstructed tube phase. For obstructed tube phase, we put concentric

cylinders of different cross section in different positions inside the tube. To

simplify our experiment, particular attention was paid to the case where the

obstruction was in the middle of the tube. The reasons for this will be given

in next section. The obstructions used in this experiment have the same wall

thickness 0.634 cm with different length (10.2 cm and 5.2 cm). Fig. 6 shows the

side view of a pipe inside the tube. The changes in resonance frequency and

quality factor Q vary from one to another, but features are common. This will

be discussed in more detail later. It is also to be noted that the values of

resonance frequency obtained on consecutive runs differed by as much as 0.1
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Hz. Because of the variation in room temperature, repeated measurements

made at various times indicated that the value of the resonance frequency

varied by as much as 0.3 Hz.

pipe

rigid-valled tube

Fig. 6. Side view of a pipe inside the tube.
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IV. RESULTS AND DISCUSSION

The results for both the empty and obstructed tube will be presented and

discussed in this section. We begin by showing some typical features of

pressure, acceleration spectra and waveforms. Secondly, we focus on the

discussion of input power and dissipated power, and check the validity of our

measurements by applying small-but-finite theory. Also, a comparison of the

mode structure (resonance frequency harmonicity) for both cases will be

given and discussed.

A. EMPTY TUBE

1. Typical acceleration spectra, pressure spectra and waveforms

The pressure and piston acceleration spectra and waveforms are

represented in Fig. 7 - 9 for low, moderate, and high values of piston

acceleration. In each case the tube is driven at its fundamental resonance

frequency. The amplitudes in dBV of some of the spectral peaks are indicated

in the figures. The conversion from dBV to pressure in Pa is calculated as

follow:

P = (1280)(10 level in dBVt20) pa,

where we have used the microphone sensitivity of 53.85 mV/Psi and an

amplifier gain of 100. Also the conversion from dBV to acceleration in m/s 2

is given as
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acc = (15 .0 8 )(10 level in dBVt2q i,
S2

where we have used the accelerometer sensitivity 66.3 mV/m/s 2 .

For the case of small acceleration amplitude (2.2 m/s 2), the typical

spectrum and waveform are shown in Fig. 7. As it can be seen from Fig. 7(b),

the second harmonic is very small compared to the fundamental. The

difference in spectrum level for the first two harmonics is larger than 35dB.

That is, the second harmonic is 2% of the fundamental. Fig. 7(c) shows that

the waveform is relatively sinusoidal and smooth. As the acceleration

amplitude is increased, the waveform exhibits slight distortion, particularly

in the negative portion of the cycle. Fig. 8 shows the corresponding spectrum

and waveform when the acceleration amplitude is increased to about 24m/s 2.

Notice that, from Fig. 8(c), the further steepening of the waveform has been

enhanced by the growth of a secondary minimum in the latter part of the

negative portion of the cycle. Inspection of Fig. 8(b) shows that, at this stage,

the second harmonic has become 22% of the fundamental, and all of the

higher harmonics have increased in value. This result shows that an

increasing amount of the input energy is being transferred to higher modes.

Now, as the acceleration amplitude is increased to above 30 m/s 2, the

waveform is distorted even further and a strong shock appears. Fig. 9 shows

the corresponding figures. It is important to note that, in Fig. 9(b), the

difference between the first and the second harmonic has decreased further to

less than 12dB. In other words, the second harmonic has become 25% of the

fundamental. At this point, there is even more energy transferred to higher

harmonics. A more common measure of the piston motion is the Mach
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number of the piston rather than the acceleration. The Mach number is the

ratio of the peak piston velocity divided by the speed of sound uo / c = Ao/oc.

The corresponding piston Mach numbers for Fig. 7,8 and 9 are

4.3 x 10-6, 5.8 x 10-5, and 7.7 X 10-6, respectively.

2. Q vs frequency

This experiment involves determining the resonance frequency and

the quality factor by two different techniques: the energy method and

frequency response. In Fig. 10, we show an example of the frequency response

data, which is a graph of the amplitude of the microphone output as a

function of driving frequency. The individual points represent the measured

data, and the line represents the ideal response based on the fit to a standard

resonance equation, Eq. (18).

The measured Q's for the first five modes are shown in Fig. 11. The

piston Mach number is 4.3 x 10-6. It is recalled that the Q of the tube is simply

proportional to the ratio of R / 8 , and furthermore, 8 (either viscous or

thermal) is proportional to 1I /lii. Hence, Q should be proportional to 4-'o.

This is confirmed by the measurements. The figure indicates that the two

measurement techniques are within a few percent. Also, the energy method

gives slightly larger Q's than the frequency response. The theoretical Q is also

plotted. It is calculated from Eq. (19). It is apparent that the measured Q's are

consistently lower than the predicted ones. Although we can't explain this

result, we do point out that it is consistent with results obtained by Coppens

and Sanders [Ref. 31.

The measured resonance frequencies are shown in Table 1. Notice

that the ratio of fn/f, reveals the mode structure of the empty tube. It shows
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the overtones are very nearly exact harmonics of the fundamental. Later, we

will compare this ratio with that of the obstructed tube to get some insight.

3. Analysis of the input power and dissipated power

The input energy can be calculated from Eq. (4). Once again, when

finite-amplitude effects are taken into consideration, the pressure is modified

by the presence of higher harmonics. Thus, in order to evaluate the

contribution from each component of u(0,t) and p(0,t), all we need is to

express Eq. (4) in terms of their components. With these changes, the new

expression for input power is shown as

Einput= ((PI + P2 
+ P3 +...) (Ul + u2 + u3 +...)) S, (40)

Since the time average of the cross terms, i.e., plu 2, plu 3 ....., will be zero, Eq.

(40) can be simplified, with the substitution of Eq. (5) for each components of

p and u, as follows:

input= (PlUl + p2u2+p3U3 +...) S
p1AI + p2A2! A3+ S~--2a + + ")S"  (41)

where P1, P2,... are the peak values of the harmonics of the microphone

output, A1, A2, ...the peak values of the harmonics of the acceleration of the

piston, and CO is the resonance frequency. The values of P1, A1, etc were

obtained from the spectra. t is obtained from Eq. (20), using the measured Q.
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Fig. 7. The spectrum and waveform observed at resonance of the
fundamental of the tube for low piston Mach number case. (a)

spectrum of acceleration. (b) spectrum of microphone output. (c)
microphone output waveform.
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Fig. 8. The spectrum and waveform for moderate piston Mach number
case. (a) Spectrum of acceleration. (b) spectrum of microphone

output. (c) microphone output waveform.
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Fig. 9. The spectrum and waveform for high piston Mach number case.

(a) spectrum of acceleration. (b) spectrum of microphone output.
(c) microphone output waveform.
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Fig. 10. A typical least square fit of Q. Points represent the measured data;
line is the ideal fit.
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Fig. 11. Experimental Q obtained from frequency response and energy

method. Line is theoretical calculation from Eq. (19). "*

represents the measured Q from energy method, -0-is the Q for
frequency response.

TABLE 1. MEASURED RESONANCE FREQUENCE OF THE
EMPTY TUBE.

Mode fn f

1 238 1.000

2 477 2.004

3 715 3.004
4 955 4.013

5 1194 5.017
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The measurements were made by increasing the piston acceleration

while the frequency was held at the fundamental mode of the tube. For the

convenience of comparing the results, the values for total dissipation E are

grouped into two quantities, E1 and t 2 + t 3 + ...,where 2 + t 3 + ... represents

the power dissipated by all of the harmonics except the fundamental. Also

normalization has been used in presenting these results by using unitless

fraction values. The results E 1 are shown in Fig. 12. As the Mach number of

the piston increases, the ratio of t 1 /Einpu decreases. The interpretation of this

figure is that as more energy is put into the system, more energy is transferred

to and dissipated by the harmonics generated by nonlinear mechanisms. In

other words, the more energy we input, less of that input energy is stored in

the fundamental. For example, in the low amplitude regime, almost all of

the input power is stored in the fundamental, while for the high amplitude

regime, only about 85% of that input power is held in the fundamental.

Fig. 13 shows the ratio of the energy dissipated by the higher

harmonics, i.e., 2 + P13 + ...to the Einpu. It is also noted that the fifth and the

higher harmonics are very small. Roughly speaking, the fifth harmonic

amplitude is about 60 dB down with respect to the fundamental i.e., the fifth

harmonic is only 0.1% of the fundamental, even for high acceleration

amplitude. So, we only include the first five harmonics in the calculation of

the total energy dissipation by all the overtones. It is sufficiently accurate for

our purpose. Fig. 14 shows the ratio of total dissipated power to the input

power. The individual points represent the experimental result, and the line

is the ideal ratio of total acoustic dissipated energy to the total input energy,

i.e., a ratio of 1. The maximum error is approximately 1%. Hence, Fig. 14
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gives confidence that our techniques are valid and that all of the major

sources of loss have been accounted for. However, there is a slight systematic

decrease in the ratio at higher Mach number.

1 .1

1.0 a

UQ

E input 
0.9

0

0.8

Piston Mach number (iXI O" )

Fig. 12. Measured ratio of Ci / Iinpui. The ratio is plotted against
the piston Mach number.

Before we terminate our discussion of the empty tube, it is

instructive to further investigate the validity of our measurements by

comparing our results with the small-but-finite approximation theory

proposed by Coppens et. al. [Ref. 31. Fig. 15 shows the comparison between

measured values and the theoretical prediction for different Mach number.

From inspection of the figure, the following observations can be made: (1) for

low Mach numbers (roughly speaking, acceleration amplitudes is below 1 x

10-5), the agreement between the theoretically predicted values from small-
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but-finite theory and measurements is qualitatively and quantitatively good

for the first few components (Fig. 15(a) only shows the comparison for the

first three components P11, P22, P33). (2) When the Mach number is raised up

to about 3.0 x 10-5, the comparison indicates that the theoretical P11 and P33

are slightly larger than the measured results. The results suggests that the

small-but-finite theory fails to provide sufficient convergence for the leading

terms to adeguately represent the harmonic distortion (Fig. 15(b)). (3) Finally,

we see from the comparison of Fig. 15(c) that, for high enough Mach number

(about 6.72 x 10-5), theoretical values for P33, P44, P55... grow to more

pronounced values than those of P11 and P22.

B. OBSTRUCTED TUBE

The measurements on the empty tube indicate that as much as 15% of the

input energy is lost from the fundamental. The question to be answered now

is "Is there a way to prevent this transfer?" The transfer of energy is most

efficient when the overtones of the resonator are exactly harmonically related

to the fundamental resonance frequency. The empty tube closely matches

this condition as indicated in Table 1. One method of preventing the transfer

of energy is to alter the mode structure of the tube so that the overtones are

no longer harmonic of the fundamental. This is the purpose of the

obstruction. Extensive experiments were made by using a number of

different obstructions, located at different positions along the tube, to find

which gives the most significant effects. Inspection of our work reveals that

the pipe of length 5.2 cm is the best choice for our purpose. Hence, from now

on we only show the experimental data for this pipe, but the common

features are still applicable to other obstructions.

38



2 ~' 0.1 U

E iput
0

0.0~ -~ 0 1 1 1

0 2 4 68
P~nMach number (XiO-6I
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are measured values. The experimental ratio has been compared

to the ideal ratio of unity.
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Fig. 15. The comparison of observed harmonic amplitude and small-but-
finite theory prediction, for three different piston Mach numbers.

To examine the resonance frequency change, comparisons of the

experimental results and theory as a function of block position inside the tube

are shown in Fig. 16.

In Fig. 16, the abscissa represents the position of the pipe center. We

measure the pipe center position from the rigid end cap face. As can be seen

from Eq. (25), the sound speed c will affect the calculated resonance frequency

due to the uncertainty in the temperature. To get rid of this uncertainty

introduced from the sound speed c, we use ratios rather than the absolute

resonance frequencies. Thus, the ordinate is the unitless ratio of resonance

frequency of the obstructed tube to the resonance frequency of the empty tube.
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The dashed line represents the theoretical ratio from Rayleigh's theory [Eq.

26]. The solid line represents the calculation made by matching the boundary

conditions. The individual points represent the experimental ratios. As

revealed in Fig. 16, the ratio is greater than one when the pipe is near both

ends. When the pipe is in the middle of the tube, the ratio reaches its

minimum. From inspection of this figure the following observation can be

made:

* The effect of a variation in cross section is greater near a pressure
node or near pressure antinodes.

" At the points midway between the nodes and antinodes a slight
variation of section is without effect.

The agreement between measurements and calculations from boundary

conditions is surprisingly good. The discrepancies maybe due to the gap in

between the tube wall and the pipe. Although we used a thick layer of

vacuum grease, there may still be cavities formed after we slide the pipe into

the middle of tube. One advantage of using a pipe is that the radial symmetry

of the pipe will simplify the mathematical derivation of power dissipation t

for the obstructed tube case. Moreover, putting the pipe in the middle allows

us to visualize more easily the standing wave in the obstructed tube from a

longitudinally symmetric point of view. Hence, this suggests the middle

position should be used to perform our experiment. Furthermore, we show

the measured frequencies and the theoretical resonance frequencies of the

obstructed tube in Table 2. Inspection of Table 1 and Table 2 reveals that the

mode structure of the tube has been changed dramatically by the obstruction.

Especially, the ratios of the second- and fourth modes are changed more,

compared to those of empty tube. The point of all of this is that the
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obstruction can change the mode structure. Thus, we might use some kind of

obstruction to prevent the energy transfer from the fundamental to higher

harmonics.

1.03
. measured

...... Rayleigh's theoryj

1.01 - Boundary condition
obst -

f0.99 5 Sempty %

0.97-

0.95 . * , , , ,
0 10 20 30 40 50 60 70

center of tUe block (cm)

Fig. 16. Ratio of resonance frequency with block inside the tube to the
resonance frequency of empty tube. • represents the measured

ratio, line is the theoretical calculation by using boundary
conditions. Dashed line is the theoretical calculation from

Rayleigh's theory.
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TABLE 2. MEASURED RESONANCE FREQUENCY OF THE
OBSTRUCTED TUBE

Mode fn fn/f

1 227 1.000

2 487 2.144

3 686 3.019

4 974 4.289
5 1153 5.077

1. Typical acceleration spectra, pressure spectra and waveforms

Fig. 17 shows the corresponding spectra and waveforms for low

piston Mach number in the stepped tube (the Mach number is 4.26 x 10-6).

From Fig. 17(a) and (b), we can see that the spectrum level difference between

the fundamental and the second harmonic is about 60 dB, i.e., the second

harmonic is about 0.1% of the fundamental. Fig. 17(c) shows the microphone

waveform is sinusoidal. We see from the comparison of Fig. 7 and Fig. 17

that both cases have the same Mach number and both output displays are

similar with the only difference being that the second harmonic of the

obstructed tube is about 12% that of unobstructed tube. For moderate Mach

number, the corresponding spectrum and waveform are shown in Fig. 18.

Only the first three or four harmonics are big enough to be measured.

Inspection of Fig. 8 and Fig. 18 reveals that the obstructed tube suppresses the

higher harmonics. Finally, when the Mach number is even increased to 7.7 x

10-5 (which is much higher than the case of Fig. 9), the microphone output is
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sinusoidal and there is no shock in the waveform. Fig. 19 shows the

spectrum and waveform for the high acceleration amplitude case. From

inspection of Fig. 9 and Fig. 19, the following observations can be made.

* The microphone output only has three or four harmonics. This is a
big difference compared to the result of the unobstructed tube.

* The waveform is almost purely sinusoidal (Fig. 19(c)). On the other
hand, the waveform of the unobstructed tube is highly distorted, as
shown in Fig. 9(c).

This comparison remarkably demonstrates that the obstruction

inside the rigid-walled tube significantly suppresses the higher harmonics.

Subsequently, we can draw a conclusion which will be important for further

research in thermoacoustic engines: obstructions can prevent the input power

from being transferred from the fundamental to higher harmonics.

2. Q versus frequency

In Fig. 20, we show the frequency dependence of Q for the five

modes. The Q's were obtained from the frequency response. In general, the Q

values for different amplitudes do not coincide, but the common trend of Q is

proportional to i-. From the inspection of Table 1 and Table 2, we can see the

resonance frequency of the second and fourth modes are shifted upward. For

example, for the second mode, the resonance frequency is shifted from 477 Hz

up to 487 Hz. On the other hand, the resonance frequency of the first, third,

and fifth modes are shifted downward. As a second example, for the third

mode, the resonance frequency is shifted from 715 Hz for empty tube down to

686 Hz for the obstructed tube. Q's of the obstructed tube were measured to be

less than expected from classical damping, probably due to excess attenuation

generated in the gap between the obstruction and the tube.
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3. Analysis of the input power and dissipated power

As mentioned earlier in section II, to compute the total dissipated

power t for the obstructed tube, we use the expression described by Eq. (28).

The calculation of input power is the same for both the obstructed and

unobstructed cases. Also, as before, we represent the results by using the ratio

of total dissipated power t to the total input power Einput- We plot the typical

ratio E / input for the fundamental mode against the acceleration amplitude

in Fig. 21. It is to be emphasized that t includes only the fundamental of the

microphone output spectrum. As noted earlier (Figs. 17-19), for the

obstructed tube, the second harmonic is very small and there are only a few

harmonics in the microphone output spectrum. Moreover, inspection of

those data reveals that the second harmonic are always 35 dB down with

respect to the fundamental, i.e., the second harmonic is less than 2% of the

fundamental. Therefore, we calculate Etotal using tj only. On the other

hand, we do not show the ratio t 2 +t 3 +P-4 +... because the power dissipated

by higher harmonics is small enough to be ignored. Figure 21 shows the ratio

E/input versus piston Mach number. The results indicate that not all of the

energy is accounted for. There is a gradual decrease in the ratio of energies.

The reasons for this decrease are not understood. Possible reasons are excess

attenuation due to unavoidable cavities between the tube and obstruction or

turbulence at the boundary of the obstruction. This topic needs further

investigation.

Before we terminate our discussion, it is instructive for us to

compare the spectral components of the microphone output for unobstructed

and obstructed tube (see Fig. 22). It is clear from Fig. 22 (a) that the slope of the

47



line represe, ting the fundamental decreases with increasing Mach number.

In Fig. 22(b), we see the slope is almost constant over the whole range of

acceleration. Also, it can be seen the second harmonic is quite small

compared to that of unobstructed tube. Fig. 23 shows the fundamental

component of the microphone output for both empty and obstructed cases. It

can be seen, over the low amplitude range (below 5x10-5), the microphone

output of both cases are almost the same. At higher acceleration amplitudes,

the pressure amplitude in the empty tube is less than in the obstructed tube.

The difference is about 7% at the highest Mach number. Once again, the

figure indicates that suppression of the harmonics also suppresses the transfer

of energy from the fundamental.
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Fig. 17. The spectrum and waveform of the obstructed tube at low
Mach number.
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V. CONCLUSION

In this study, we used two different tubes: A plain tube (constant cross

section) and an obstructed (variable cross section) tube. In these tubes we

measure the energy stored in the harmonics generated when the tube was

driven at different amplitudes. This was done by calculating the energy

dissipated by each harmonic independently based on the observed acoustic

pressures. The dissipation of the system as a whole was determined by its

quality factor Q. As a result of this research, the following conclusions for

were reached.

A. UNOBSTRUCTED TUBE

* When the tube was driven at high amplitudes, harmonics were
observed to be large in amplitude and in number.

Quality factors (Q) for different modes of the tube were measured to
be within 5% of the predicted values. Using the measured damping
constant, all of the input energy was accounted for as being
dissipated by harmonics (including the fundamental) through
classical viscous and thermal damping at the tube walls.

Up to 15% of the energy input into the system was measured to be
dissipated by the harmonics.

B. OBSTRUCTED TUBE

* When the tube was made anharmonic by placing a concentric,
tubular obstruction in the middle of the tube, the harmonics of the
driving frequency were greatly suppressed. In this case, the total
energy dissipated by the harmonics was less than 1% of the input
energy.

" The ratio of U/Pinput decreases with increasing piston Mach number.
The reasons for this decrease are not understood. Possible reasons
are excess attenuation due to unavoidable cavities between the tube
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and obstruction or turbulence at the boundary of the obstruction.
This topic needs further investigation.

It was successfully demonstrated that nonlinearly-generated
harmonics can be suppressed by changing the cross section of the
tube near the middle section.
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